Chip integrated strategies for acoustic separation and manipulation of cells and particles.

نویسندگان

  • Thomas Laurell
  • Filip Petersson
  • Andreas Nilsson
چکیده

Acoustic standing wave technology combined with microtechnology opens up new areas for the development of advanced particle and cell separating microfluidic systems. This tutorial review outlines the fundamental work performed on continuous flow acoustic standing wave separation of particles in macro scale systems. The transition to the microchip format is further surveyed, where both fabrication and design issues are discussed. The acoustic technology offers attractive features, such as reasonable throughput and ability to separate particles in a size domain of about tenths of micrometers to tens of micrometers. Examples of different particle separation modes enabled in microfluidic chips, utilizing standing wave technology, are described along a discussion of several potential applications in life science research and in the medical clinic. Chip integrated acoustic standing wave separation technology is still in its infancy and it can be anticipated that new laboratory standards very well may emerge from the current research.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Simulation of Particle Separation in the Fluid Flow in a Microchannel Including Spiral and Acoustic Regions

Particulate separation has many applications in medicine, biology and industry. In this research, the separation of polystyrene particles with a diameter of 10, 20 and 30 μm in the fluid flow of a microchannel is investigated. The microchannel consists of a spiral region and a straight region under the influence of acoustic waves. In the spiral region, the particles under hydrodynamic effects u...

متن کامل

Dynamic acoustic field activated cell separation (DAFACS).

Advances in diagnostics, cell and stem cell technologies drive the development of application-specific tools for cell and particle separation. Acoustic micro-particle separation offers a promising avenue for high-throughput, label-free, high recovery, cell and particle separation and isolation in regenerative medicine. Here, we demonstrate a novel approach utilizing a dynamic acoustic field tha...

متن کامل

High-throughput particle manipulation by hydrodynamic, electrokinetic, and dielectrophoretic effects in an integrated microfluidic chip.

Integrating different steps on a chip for cell manipulations and sample preparation is of foremost importance to fully take advantage of microfluidic possibilities, and therefore make tests faster, cheaper and more accurate. We demonstrated particle manipulation in an integrated microfluidic device by applying hydrodynamic, electroosmotic (EO), electrophoretic (EP), and dielectrophoretic (DEP) ...

متن کامل

On-chip fluorescence-activated cell sorting by an integrated miniaturized ultrasonic transducer.

An acoustic microfluidic system for miniaturized fluorescence-activated cell sorting (microFACS) is presented. By excitation of a miniaturized piezoelectric transducer at 10 MHz in the microfluidic channel bottom, an acoustic standing wave is formed in the channel. The acoustic radiation force acting on a density interface causes fluidic movement, and the particles or cells on either side of th...

متن کامل

Sheathless Size-Based Acoustic Particle Separation

Particle separation is of great interest in many biological and biomedical applications. Flow-based methods have been used to sort particles and cells. However, the main challenge with flow based particle separation systems is the need for a sheath flow for successful operation. Existence of the sheath liquid dilutes the analyte, necessitates precise flow control between sample and sheath flow,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chemical Society reviews

دوره 36 3  شماره 

صفحات  -

تاریخ انتشار 2007